An Entropy Measure of Non-Stationary Processes
نویسندگان
چکیده
منابع مشابه
An Entropy Measure of Non-Stationary Processes
Shannon’s source entropy formula is not appropriate to measure the uncertainty of non-stationary processes. In this paper, we propose a new entropy measure for non-stationary processes, which is greater than or equal to Shannon’s source entropy. The maximum entropy of the non-stationary process has been considered, and it can be used as a design guideline in cryptography.
متن کاملPredicting non-stationary processes
1 Suppose we are given two probability measures on the set of one-way infinite finite-alphabet sequences. Consider the question when one of the measures predicts the other, that is, when conditional probabilities converge (in a certain sense), if one of the measures is chosen to generate the sequence. This question may be considered a refinement of the problem of sequence prediction in its most...
متن کاملEntropy Rate-based Stationary / Non-stationary Segmentation of Speech
This study evaluates the potential of the entropy rate contour to identify stationary and non-stationary segments of speech signals. The segmentation produced by an entropy rate-based method is compared to the manual phoneme segmentations of the TIMIT and the KIEL corpora. Characteristic points, i.e. steepest rises and falls of the entropy rate curve and its maxima and minima are investigated t...
متن کاملDynamics of Non-stationary Processes That Follow the Maximum of Continuous Tsallis Entropy
In this paper a non-stationary processes that tend to maximize the Tsallis entropy are considered. Systems with discrete probability distribution for the Tsallis entropy have already been investigated on the basis of the Speed-Gradient principle. The evolution of probability density function and continuous form of the Tsallis entropy are considered. A set of equations describing dynamics of a s...
متن کاملTemporal Aggregation of Stationary and Non-stationary Continuous-Time Processes
We study the autocorrelation structure of aggregates from a continuous-time process. The underlying continuous-time process or some of its higher derivative is assumed to be a stationary continuous-time auto-regressive fractionally integrated moving-average (CARFIMA) process with Hurst parameter H. We derive closed-form expressions for the limiting autocorrelation function and the normalized sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2014
ISSN: 1099-4300
DOI: 10.3390/e16031493